Strain-dependent photoluminescence behavior in three geometries of CdSe/CdS nanocrystals
Skip to main content
eScholarship
Open Access Publications from the University of California

Strain-dependent photoluminescence behavior in three geometries of CdSe/CdS nanocrystals

Abstract

In recent years, a new generation of quantum confined colloidal semiconductor structures has emerged, with more complex shapes than simple quantum dots1, 2. These include nanorods3 and tetrapods4. Beyond shape, it is also now possible to spatially vary the electron and hole potentials within these nanoparticles by varying the composition. Examples of these new structures include seeded dots, rods, and tetrapods, which contain a CdSe core embedded within a CdS shell5, 6. These structures may have many uses beyond those envisioned for simple quantum dots, which are frequently employed in luminescent applications7. This paper is concerned with changes in the optoelectronic properties of tetrapods when the arms are bent. We demonstrate that seeded tetrapods can serve as an optical strain gauge, capable of measuring forces on the order of nanonewtons. We anticipate that a nanocrystal strain gauge with optical readout will be useful for applications ranging from sensitive optomechanical devices to biological force investigations.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View