Skip to main content
eScholarship
Open Access Publications from the University of California
Cover page of Enzymatic carbon–fluorine bond cleavage by human gut microbes

Enzymatic carbon–fluorine bond cleavage by human gut microbes

(2025)

Fluorinated compounds are used for agrochemical, pharmaceutical, and numerous industrial applications, resulting in global contamination. In many molecules, fluorine is incorporated to enhance the half-life and improve bioavailability. Fluorinated compounds enter the human body through food, water, and xenobiotics including pharmaceuticals, exposing gut microbes to these substances. The human gut microbiota is known for its xenobiotic biotransformation capabilities, but it was not previously known whether gut microbial enzymes could break carbon–fluorine bonds, potentially altering the toxicity of these compounds. Here, through the development of a rapid, miniaturized fluoride detection assay for whole-cell screening, we identified active gut microbial defluorinases. We biochemically characterized enzymes from diverse human gut microbial classes including Clostridia, Bacilli, and Coriobacteriia, with the capacity to hydrolyze (di)fluorinated organic acids and a fluorinated amino acid. Whole-protein alanine scanning, molecular dynamics simulations, and chimeric protein design enabled the identification of a disordered C-terminal protein segment involved in defluorination activity. Domain swapping exclusively of the C-terminus conferred defluorination activity to a nondefluorinating dehalogenase. To advance our understanding of the structural and sequence differences between defluorinating and nondefluorinating dehalogenases, we trained machine learning models which identified protein termini as important features. Models trained on 41-amino acid segments from protein C termini alone predicted defluorination activity with 83% accuracy (compared to 95% accuracy based on full-length protein features). This work is relevant for therapeutic interventions and environmental and human health by uncovering specificity-determining signatures of fluorine biochemistry from the gut microbiome.

Section-level genome sequencing and comparative genomics of Aspergillus sections Cavernicolus and Usti

(2025)

The genus Aspergillus is diverse, including species of industrial importance, human pathogens, plant pests, and model organisms. Aspergillus includes species from sections Usti and Cavernicolus, which until recently were joined in section Usti, but have now been proposed to be non-monophyletic and were split by section Nidulantes, Aenei and Raperi. To learn more about these sections, we have sequenced the genomes of 13 Aspergillus species from section Cavernicolus (A. cavernicola, A. californicus, and A. egyptiacus), section Usti (A. carlsbadensis, A. germanicus, A. granulosus, A. heterothallicus, A. insuetus, A. keveii, A. lucknowensis, A. pseudodeflectus and A. pseudoustus), and section Nidulantes (A. quadrilineatus, previously A. tetrazonus). We compared these genomes with 16 additional species from Aspergillus to explore their genetic diversity, based on their genome content, repeat-induced point mutations (RIPs), transposable elements, carbohydrate-active enzyme (CAZyme) profile, growth on plant polysaccharides, and secondary metabolite gene clusters (SMGCs). All analyses support the split of section Usti and provide additional insights: Analyses of genes found only in single species show that these constitute genes which appear to be involved in adaptation to new carbon sources, regulation to fit new niches, and bioactive compounds for competitive advantages, suggesting that these support species differentiation in Aspergillus species. Sections Usti and Cavernicolus have mainly unique SMGCs. Section Usti contains very large and information-rich genomes, an expansion partially driven by CAZymes, as section Usti contains the most CAZyme-rich species seen in genus Aspergillus. Section Usti is clearly an underutilized source of plant biomass degraders and shows great potential as industrial enzyme producers.

Cover page of An RNA ligase partner for the prokaryotic protein-only RNase P: insights into the functional diversity of RNase P from genome mining

An RNA ligase partner for the prokaryotic protein-only RNase P: insights into the functional diversity of RNase P from genome mining

(2025)

RNase P can use either an RNA- or a protein-based active site to catalyze 5'-maturation of transfer RNAs (tRNAs). This distinctive attribute in the biocatalytic repertoire raises questions about the underlying evolutionary driving forces, especially if each variant somehow affords a selective advantage under certain conditions. Upon mining all publicly available prokaryotic genomes and examining gene co-occurrence, we discovered that an RNA ligase with circularization activity was significantly overrepresented in genomes that contain the protein form of RNase P. This unexpected linkage inspires testable ideas to understand the bases for scenarios that might favor RNase P variants of different architectures/make-up.

Cover page of Microbial secondary metabolites: advancements to accelerate discovery towards application

Microbial secondary metabolites: advancements to accelerate discovery towards application

(2025)

Microbial secondary metabolites not only have key roles in microbial processes and relationships but are also valued in various sectors of today's economy, especially in human health and agriculture. The advent of genome sequencing has revealed a previously untapped reservoir of biosynthetic capacity for secondary metabolites indicating that there are new biochemistries, roles and applications of these molecules to be discovered. New predictive tools for biosynthetic gene clusters (BGCs) and their associated pathways have provided insights into this new diversity. Advanced molecular and synthetic biology tools and workflows including cell-based and cell-free expression facilitate the study of previously uncharacterized BGCs, accelerating the discovery of new metabolites and broadening our understanding of biosynthetic enzymology and the regulation of BGCs. These are complemented by new developments in metabolite detection and identification technologies, all of which are important for unlocking new chemistries that are encoded by BGCs. This renaissance of secondary metabolite research and development is catalysing toolbox development to power the bioeconomy.

Cover page of Beneath the surface: Unsolved questions in soil virus ecology

Beneath the surface: Unsolved questions in soil virus ecology

(2025)

Soil virus ecology is an exciting but still nascent field of research in soil microbiology. While there has been a recent surge in soil virus research studies, many fundamental questions remain unanswered, and a range of technical and bioinformatic challenges need to be overcome. In this perspective article, we present a series of key questions that highlight fruitful research areas for ongoing and future efforts. These include describing the challenges involved in understanding soil viral abundance and activity, spatiotemporal dynamics, life strategy prevalence, virus-mediated biogeochemical impacts, viral protein function, host prediction, and soil RNA virus discovery. In the near term, combining approaches (e.g., cultivation-based, meta-omics, biogeochemical, experimental, and bioinformatic) will be key to assessing the ecological and biogeochemical impacts of soil viruses from the microscopic to the field and global scales. Still, we stress that results must be tempered by current methodological limitations and highlight knowledge gaps that are most pressing to fill via new methods or measurements, such as the prevalence of different viral replication strategies across soils, the fate of microbial necromass carbon after viral lysis, the frequency of virus-host encounters that do not lead to successful infections yet could be bioinformatically mistaken as infections, and the diversity and ecological impacts of RNA viruses in soil.

Cover page of Section-level genome sequencing and comparative genomics of Aspergillus sections Cavernicolus and Usti.

Section-level genome sequencing and comparative genomics of Aspergillus sections Cavernicolus and Usti.

(2025)

The genus Aspergillus is diverse, including species of industrial importance, human pathogens, plant pests, and model organisms. Aspergillus includes species from sections Usti and Cavernicolus, which until recently were joined in section Usti, but have now been proposed to be non-monophyletic and were split by section Nidulantes, Aenei and Raperi. To learn more about these sections, we have sequenced the genomes of 13 Aspergillus species from section Cavernicolus (A. cavernicola, A. californicus, and A. egyptiacus), section Usti (A. carlsbadensis, A. germanicus, A. granulosus, A. heterothallicus, A. insuetus, A. keveii, A. lucknowensis, A. pseudodeflectus and A. pseudoustus), and section Nidulantes (A. quadrilineatus, previously A. tetrazonus). We compared these genomes with 16 additional species from Aspergillus to explore their genetic diversity, based on their genome content, repeat-induced point mutations (RIPs), transposable elements, carbohydrate-active enzyme (CAZyme) profile, growth on plant polysaccharides, and secondary metabolite gene clusters (SMGCs). All analyses support the split of section Usti and provide additional insights: Analyses of genes found only in single species show that these constitute genes which appear to be involved in adaptation to new carbon sources, regulation to fit new niches, and bioactive compounds for competitive advantages, suggesting that these support species differentiation in Aspergillus species. Sections Usti and Cavernicolus have mainly unique SMGCs. Section Usti contains very large and information-rich genomes, an expansion partially driven by CAZymes, as section Usti contains the most CAZyme-rich species seen in genus Aspergillus. Section Usti is clearly an underutilized source of plant biomass degraders and shows great potential as industrial enzyme producers. Citation: Nybo JL, Vesth TC, Theobald S, Frisvad JC, Larsen TO, Kjaerboelling I, Rothschild-Mancinelli K, Lyhne EK, Barry K, Clum A, Yoshinaga Y, Ledsgaard L, Daum C, Lipzen A, Kuo A, Riley R, Mondo S, LaButti K, Haridas S, Pangalinan J, Salamov AA, Simmons BA, Magnuson JK, Chen J, Drula E, Henrissat B, Wiebenga A, Lubbers RJM, Müller A, dos Santos Gomes AC, Mäkelä MR, Stajich JE, Grigoriev IV, Mortensen UH, de Vries RP, Baker SE, Andersen MR (2025). Section-level genome sequencing and comparative genomics of Aspergillus sections Cavernicolus and Usti. Studies in Mycology 111: 101-114. doi: 10.3114/sim.2025.111.03.

Cover page of Primary and Re-exposure effects of D-enantiomeric peptide on metabolism, diversity, and composition of oral biofilms at different stages of recovery.

Primary and Re-exposure effects of D-enantiomeric peptide on metabolism, diversity, and composition of oral biofilms at different stages of recovery.

(2025)

The persistence of bacteria in the root canal system is the primary cause of recurrent apical periodontitis. The adaptability of residual bacteria to changing environmental conditions is a key survival strategy of biofilms, often leading to endodontic treatment failure. DJK-5 is a protease-resistant, broad-spectrum D-enantiomeric peptide that degrades or prevents the accumulation of guanosine penta- and tetraphosphates, which are important for biofilm formation. We evaluated the effects of primary antimicrobial agents and nutrient conditions on the recovery, metabolism, diversity, and composition of oral biofilms, and investigated how these factors affect the efficacy of DJK-5 and chlorhexidine (CHX) during re-exposure. Primary irrigants and nutrient conditions significantly influenced biofilm recovery, metabolic activity, diversity, and composition. Biofilm recovery was slower in nutrient-poor groups compared to nutrient-rich ones, and nutrient availability had the greatest effect on shaping both the diversity and composition of the biofilms. Water and DJK-5 groups showed similar biofilm diversity trends, while CHX generally led to lower diversity. Results indicate that primary irrigants and nutrient conditions significantly impact biofilm composition, diversity, and recovery. However, these changes did not compromise DJK-5s effectiveness in killing of biofilm microbes during re-exposure of recovered biofilms.

Cover page of Enhancers in Plant Development, Adaptation and Evolution

Enhancers in Plant Development, Adaptation and Evolution

(2025)

Understanding plant responses to developmental and environmental cues is crucial for studying morphological divergence and local adaptation. Gene expression changes, governed by cis-regulatory modules (CRMs) including enhancers, are a major source of plant phenotypic variation. However, while genome-wide approaches have revealed thousands of putative enhancers in mammals, far fewer have been identified and functionally characterized in plants. This review provides an overview of how enhancers function to control gene regulation, methods to predict DNA sequences that may have enhancer activity, methods utilized to functionally validate enhancers and the current knowledge of enhancers in plants, including how they impact plant development, response to environment and evolutionary adaptation.