The Sherrington-Kirkpatrick spin glass model has been studied as a source of
insight into the statistical mechanics of systems with highly diversified collections of
competing low energy states. The goal of this summary is to present some of the ideas which
have emerged in the mathematical study of its free energy. In particular, we highlight the
perspective of the cavity dynamics, and the related variational principle. These are
expressed in terms of Random Overlap Structures (ROSt), which are used to describe the
possible states of the reservoir in the cavity step. The Parisi solution is presented as
reflecting the ansatz that it suffices to restrict the variation to hierarchal structures
which are discussed here in some detail. While the Parisi solution was proven to be
correct, through recent works of F. Guerra and M. Talagrand, the reasons for the
effectiveness of the Parisi ansatz still remain to be elucidated. We question whether this
could be related to the quasi-stationarity of the special subclass of ROSts given by
Ruelle's hierarchal `random probability cascades' (also known as GREM).