Abstract:
A theoretical model is developed to describe how autonomous underwater vehicle (AUV)-based current measurements are influenced by a surface wave field. The model quantifies a quasi-Lagrangian, wave-induced velocity bias as a function of the local wave conditions, and the vehicle’s depth and velocity using a first-order expansion of the linear wave solution. The theoretical bias is verified via field experiments carried out off the coast of Oahu, Hawaii. Spatially averaged along- and cross-track AUV velocity measurements are calculated over one effective wavelength and compared with time-averaged, fixed ADCP measurements in a range of wave and current conditions. The wave-induced bias is calculated using wave directional spectra derived from fixed ADCP data. Ensemble-averaged velocity differences confirm the presence of the wave-induced bias O(1–5) cm s−1 and reveal an additional bias in the direction of the vehicle motion O(1) cm s−1. The analysis considers velocity measurements made using a Remote Environmental Monitoring Units (REMUS) 100 AUV, but the content applies to any small AUV (vehicle size wavelength) immersed in a wave field.