Some of the challenges in the design of next generation wireless systems are providing high data rate multimedia services, increasing user capacity, improving reliability and range, terminal mobility, robustness to interference, limited spectrum availability, and transmission power constraints. The approaches that we take in this dissertation to address some of the aforementioned issues are cross-layer design and user cooperation. In the first part of the dissertation, on a wideband CDMA channel with a finite transmission bandwidth constraint, we consider the problem of optimal bandwidth allocation for source coding, channel coding and spread-spectrum modulation. For analytical tractability, we assume a memoryless Gaussian source with an optimum quantizer, a convolutional encoder with a soft-decision decoder, and a spread spectrum modulator with random spreading codes and a RAKE receiver. In the presence of both multiple access interference (MAI) and narrowband interference (NBI), for frequency-selective Nakagami fading channels, we derive upper and lower bounds on the end-to-end average source distortion. Since an exact expression for the average distortion is difficult to derive, we seek to obtain the three-tuple (i.e., source coding rate, channel coding rate, and spreading factor) that optimizes the upper and lower bounds on the average distortion. Under various channel conditions and interference levels, we numerically computed the optimum three-tuple, and verify the accuracy with system-level simulations. For small values of spreading factor, we show that the system performance is hurt by the self- interference of the user-of-interest, thus cautioning against aggressive channel coding. Since a multi-carrier DS-CDMA (or, simply MC-CDMA) system is more robust to NBI, we propose to employ an MC-CDMA system to improve the distortion performance on channels with severe NBI. For a fixed channel code rate, we then quantify the tradeoff between source coding and spreading for an MC-CDMA system. In the second part of the dissertation, we consider a parallel relay channel wherein the relay nodes help the source transmissions to provide improved reliability at the destination. With multiple relay nodes, we design and analyze robust noncoherent amplify-and forward receivers for use on rapidly varying Rayleigh fading channels with unknown instantaneous channel knowledge. Next, with a sum power constraint, we consider the problem of optimal transmit power allocation when only statistical knowledge, in terms of the average fading power, of the channel is available at the transmitting nodes. We quantify the improvements in both outage probability performance and asymptotic cooperation gain of various relaying protocols with optimal power allocation