We describe UMA (Unified Model of Arithmetic), a theory of children’s arithmetic implemented as a computational model. UMA extends a theory of fraction arithmetic (Braithwaite et al., 2017) to include arithmetic with whole numbers and decimals. We evaluated UMA in the domain of decimal arithmetic by training the model on problems from a math textbook series, then testing it on decimal arithmetic problems that were solved by 6th and 8th graders in a previous study. UMA’s test performance closely matched that of children, supporting three assumptions of the theory: (1) most errors reflect small deviations from standard procedures, (2) between-problem variations in error rates reflect the distribution of input that learners receive, and (3) individual differences in strategy use reflect underlying variation in learning parameters.