The management of California's coastal resources, particularly nearshore fisheries, is increasingly recognizing the importance of protecting key habitats. The challenge that is emerging is how can we characterize marine habitats? The answer is not simple, since marine habitats include both a substrate and a water column component. Regardless of the substrate affinities of a target species, its performance and dynamics will be linked to characteristics of the surrounding water column. The pelagic component of the habitat sets many physical characteristics, determines the availability of planktonic food, and commonly plays a key role in the delivery of young. Describing habitats solely on the basely of the bottom characteristics is clearly insufficient. Yet, to date habitat descriptions and characterization of essential species habitats include at most only rudimentary characteristics of the water column such as depth.
Here I propose a new approach that applies modern statistical techniques to analyses of time series of spatially explicit oceanographic data for the coast of California (e.g., satellite remote sensing [sea surface temperature, Chl a, and sediment concentrations], CODAR measures of surface circulation, moored arrays of instruments). Unlike benthic characteristics, which are typically consistent over time, water column characteristics are quite dynamic. Therefore habitat descriptions will include both the average state and their pattern of variation over time. The analytical approach will utilize modern statistical procedures that incorporate nonlinear time series analysis and stochastic spatial modeling. The goal will be to develop a framework for defining and mapping oceanographic habitats for the coast of California.
The proposed study will provide important new insight on the spatial and temporal dynamics of marine habitats. The resulting characterizations should have broad application for a number of coastal management programs in California, including the development of nearshore fisheries management plans and the establishment of marine protected areas.