E-cigarette aerosols are exceedingly different from conventional tobacco smoke, containing dozens of chemicals not found in cigarette smoke. It is highly likely that chronic use of e-cigarettes will induce pathological changes in both the heart and lungs. Here we review human and animal studies published to date and summarize the cardiopulmonary physiological changes caused by vaping. In terms of cardiac physiology, acute exposure to e-cigarette aerosols in human subjects led to increased blood pressure and heart rate, similar to traditional cigarettes. Chronic exposure to e-cigarette aerosols using animal models caused increased arterial stiffness, vascular endothelial changes, increased angiogenesis, cardiorenal fibrosis and increased atherosclerotic plaque formation. Pulmonary physiology is also affected by e-cigarette aerosol inhalation, with increased airway reactivity, airway obstruction, inflammation and emphysema. Research thus far demonstrates that the heart and lung undergo numerous changes in response to e-cigarette use, and disease development will depend on how those changes combine with both environmental and genetic factors. E-cigarettes have been advertised as a healthy alternative to cigarette smoking, and users are under the impression that vaping of e-cigarettes is harmless, but these claims that e-cigarettes are safer and healthier are not based on evidence. Data from both humans and animal models are consistent in demonstrating that vaping of e-cigarettes causes health effects both similar to and disparate from those of cigarette smoking. Further work is needed to define the long-term cardiopulmonary effects of e-cigarette use in humans.