Introduction: The objective is to evaluate the accuracy of medication dosing and the time to medication administration in the prehospital setting using a novel length-based pediatric emergency resuscitation tape.
Methods: This study was a two-period, two-treatment crossover trial using simulated pediatric patients in the prehospital setting. Each participant was presented with two emergent scenarios; participants were randomized to which case they encountered first, and to which case used the National Park Service (NPS) emergency medical services (EMS) length-based pediatric emergency resuscitation tape. In the control (without tape) case, providers used standard methods to determine medication dosing (e.g. asking parents to estimate the patient’s weight); in the intervention (with tape) case, they used the NPS EMS length-based pediatric emergency resuscitation tape. Each scenario required dosing two medications (Case 1 [febrile seizure] required midazolam and acetaminophen; Case 2 [anaphylactic reaction] required epinephrine and diphenhydramine). Twenty NPS EMS providers, trained at the Parkmedic/Advanced Emergency Medical Technician level, served as study participants.
Results: The only medication errors that occurred were in the control (no tape) group (without tape: 5 vs. with tape: 0, p=0.024). Time to determination of medication dose was significantly shorter in the intervention (with tape) group than the control (without tape) group, for three of the four medications used. In case 1, time to both midazolam and acetaminophen was significantly faster in the intervention (with tape) group (midazolam: 8.3 vs. 28.9 seconds, p=0.005; acetaminophen: 28.6 seconds vs. 50.6 seconds, p=0.036). In case 2, time to epinephrine did not differ (23.3 seconds vs. 22.9 seconds, p=0.96), while time to diphenhydramine was significantly shorter in the intervention (with tape) group (13 seconds vs. 37.5 seconds, p<0.05).
Conclusion: Use of a length-based pediatric emergency resuscitation tape in the prehospital setting was associated with significantly fewer dosing errors and faster time-to-medication administration in simulated pediatric emergencies. Further research in a clinical field setting to prospectively confirm these findings is needed.