H-ficolin is a serum lectin synthesized (as a ~34 kDa polypeptide) predominantly by the liver and lung tissues and is one of the soluble pattern recognition receptors of the innate immune system. It is structurally similar to
L- and
M- ficolins, but is different in its tissue expression and binding affinities to pathogenic ligands. Ficolins have an amino (N)-terminal cysteine-rich region, a middle stretch of a collagen-like sequence, and a fibrinogen-like domain in the carboxy (C)-terminus. Three identical polypeptides form a structural (triple helical) subunit, with the help of the collagen-like domain. Further oligomerization of this subunit results in different sized H-ficolin molecules in circulation. The polypeptides in the structural subunit are cross-linked by disulphide bonds in the N-terminal region and the fibrinogen-like domain forms a globular structure. Thus, the overall structure of H-ficolin also resembles mannose/mannan- binding lectin (
MBL). The primary role of H-ficolin is that of a pattern recognition receptor, recognizing acetylated sugar residues on the cell surface of different bacteria, viruses and other pathogens. There are two pathways by which H-ficolin may participate in a host defense response: 1) It activates the complement lectin pathway, via MBL/ficolin associated serine proteases (
MASPs), that converges with the classical complement pathway at the level of complement
C4, and 2) it may also act directly as an opsonin, enhancing phagocytosis by binding to cell-surface receptors present on phagocytic cells.