The origins of π-facial selectivities in the borohydride reduction of endocyclic iminium ions have been elucidated by density functional theory calculations. In reductions of conjugated ("thermodynamic") iminium ions, the π-facial preference of the hydride attack was found to be due to torsional steering. Attack at the favored π-face leads to a lower-energy "half-chair"-like conformation of the tetrahydropyridine product, whereas attack at the other π-face results in an unfavorable "twist-boat" conformation. In reductions of nonconjugated ("kinetic") iminium ions, torsional distinction is small between the top- and bottom-face attacks, and the π-facial selectivity of the hydride approach is primarily due to steric hindrance.