We present a method for solving Poisson and heat equations with discon- tinuous coefficients in two- and three-dimensions. It uses a Cartesian cut-cell/embedded boundary method to represent the interface between materi- als, as described in Johansen & Colella (1998). Matching conditions across the interface are enforced using an approximation to fluxes at the boundary. Overall second order accuracy is achieved, as indicated by an array of tests using non-trivial interface geometries. Both the elliptic and heat solvers are shown to remain stable and efficient for material coefficient contrasts up to 106, thanks in part to the use of geometric multigrid. A test of accuracy when adaptive mesh refinement capabilities are utilized is also performed. An example problem relevant to nuclear reactor core simulation is presented, demonstrating the ability of the method to solve problems with realistic physical parameters.