Body-worn cameras are now commonly used for logging daily life, sports, and
law enforcement activities, creating a large volume of archived footage. This
paper studies the problem of classifying frames of footage according to the
activity of the camera-wearer with an emphasis on application to real-world
police body-worn video. Real-world datasets pose a different set of challenges
from existing egocentric vision datasets: the amount of footage of different
activities is unbalanced, the data contains personally identifiable
information, and in practice it is difficult to provide substantial training
footage for a supervised approach. We address these challenges by extracting
features based exclusively on motion information then segmenting the video
footage using a semi-supervised classification algorithm. On publicly available
datasets, our method achieves results comparable to, if not better than,
supervised and/or deep learning methods using a fraction of the training data.
It also shows promising results on real-world police body-worn video.