Spatio-racial distributions in major US cities change on the timescale of a single decade. Here we describe a methodology to forecast such changes a decade ahead. First, we transform the data from population counts to a grid of categorical population types. Then, we build an empirical model of past change using supervised machine learning and extrapolate it into the future to make a prediction. The model uses only statistics of population categories as features, there are no ancillary variables. To account for the non-stationarity of the change we use a synthetic training dataset based on past transitions and estimated future frequencies of these transitions. The methodology is described and validated by training a model on 1990-2000 data and using it to predict spatio-racial distributions in 2010. This prediction is then compared to the actual spatio-racial 2010 distribution. We have found that a highly accurate model of change can be constructed using this methodology. Extrapolating such models to the future results in some loss of accuracy, but the method still yields satisfactory predictions.