Representational Similarity Analysis (RSA) is a powerful tool for linking brain activity patterns to cognitive processes via similarity, allowing researchers to identify the neural substrates of different cognitive levels of representation. However, the ability to map between levels of representation and brain activity using similarity depends on underlying assumptions about the dynamics of cognitive processing. To demonstrate this point, we present three toy models that make different assumptions about the interactivity within the reading system, (1) discrete, feedforward, (2) cascading, feedforward and (3) fully interactive. With the temporal resolution of fMRI, only the discrete, feedforward model provides a straightforward mapping between activation similarity and level of representation. These simulations indicate the need for a cautious interpretation of RSA results, especially with processes that are highly interactive and with neuroimaging methods that have low temporal resolution. The study further suggests a role for fully-fleshed out computational models in RSA analyses.