Background
Thirdhand smoke (THS) represents the accumulation of secondhand smoke on indoor surfaces and in dust, which, over time, can become more toxic than secondhand smoke. Although it is well known that children of smokers are at increased risk for asthma or asthma exacerbation if the disease is already present, how exposure to THS can influence the development or exacerbation of asthma remains unknown.Objective
We investigated whether epicutaneous exposure to an important component of THS, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), can influence asthma pathology in a mouse model elicited by means of repeated intranasal challenge with cockroach antigen (CRA).Methods
Wild-type mice, α7 nicotinic acetylcholine receptor (nAChR)- or mast cell (MC)-deficient mice, and mice with MCs that lacked α7 nAChRs or were the host's sole source of α7 nAChRs were subjected to epicutaneous NNK exposure, intranasal CRA challenge, or both, and the severity of features of asthma pathology, including airway hyperreactivity, airway inflammation, and airway remodeling, was assessed.Results
We found that α7 nAChRs were required to observe adverse effects of epicutaneous NNK exposure on multiple features of CRA-induced asthma pathology. Moreover, MC expression of α7 nAChRs contributed significantly to the ability of epicutaneous NNK exposure to exacerbate airway hyperreactivity to methacholine, airway inflammation, and airway remodeling in this model.Conclusion
Our results show that skin exposure to NNK, a component of THS, can exacerbate multiple features of a CRA-induced model of asthma in mice and define MCs as key contributors to these adverse effects of NNK.