- Wang, Hui;
- Zhang, Jiayan;
- Liao, Shiqing;
- Henstra, Anne M;
- Leon, Deborah;
- Erde, Jonathan;
- Loo, Joseph A;
- Ogorzalek Loo, Rachel R;
- Zhou, Z Hong;
- Gunsalus, Robert P
Archaea share genomic similarities with Eukarya and cellular architectural similarities with Bacteria, though archaeal and bacterial surface layers (S-layers) differ. Using cellular cryo-electron tomography, we visualized the S-layer lattice surrounding Methanospirillum hungatei, a methanogenic archaeon. Though more compact than known structures, M. hungatei's S-layer is a flexible hexagonal lattice of dome-shaped tiles, uniformly spaced from both the overlying cell sheath and the underlying cell membrane. Subtomogram averaging resolved the S-layer hexamer tile at 6.4-angstrom resolution. By fitting an AlphaFold model into hexamer tiles in flat and curved conformations, we uncover intra- and intertile interactions that contribute to the S-layer's cylindrical and flexible architecture, along with a spacer extension for cell membrane attachment. M. hungatei cell's end plug structure, likely composed of S-layer isoforms, further highlights the uniqueness of this archaeal cell. These structural features offer advantages for methane release and reflect divergent evolutionary adaptations to environmental pressures during early microbial emergence.