Objectives:Antibiotic selective pressure may result in changes to antimicrobial susceptibility throughout the course of infection, especially for organisms that harbour chromosomally encoded AmpC β-lactamases, notably Enterobacter spp., in which hyperexpression of ampC may be induced following treatment with cephalosporins. In this study, we document a case of bacteraemia caused by a blaSME-1-harbouring Serratia marcescens that subsequently developed resistance to expanded-spectrum cephalosporins, piperacillin/tazobactam and fluoroquinolones, over the course of several months of treatment with piperacillin/tazobactam and ciprofloxacin. Methods:Susceptibility testing and WGS were performed on three S. marcescens isolates from the patient. β-Lactamase activity in the presence or absence of induction by imipenem was measured by nitrocefin hydrolysis assays. Expression of ampC and blaSME-1 under the same conditions was determined by real-time PCR. Results:WGS demonstrated accumulation of missense and nonsense mutations in ampD associated with stable derepression of AmpC. Gene expression and β-lactamase activity of both AmpC and SME-1 were inducible in the initial susceptible isolate, but were constitutively high in the resistant isolate, in which total β-lactamase activity was increased by 128-fold. Conclusions:Although development of such in vitro resistance due to selective pressure imposed by antibiotics is reportedly low in S. marcescens, our findings highlight the need to evaluate isolates on a regular basis during long-term antibiotic therapy.