This study explores factors that effect vehicle accidents, predicts the severity of accidents through logistic regression, and forecasts the number of future accidents to occur using time-series analysis. From insights gathered during exploration, a final dataset is prepared for the use of a logistic regression model. The final model predicts whether or not an accident will be severe with an accuracy of 82%, and reveals the three main features that statistically contribute to the odds of an accident having a severe impact on traffic. Finally, a time-series analysis is run in order to model the number of accidents that can occur on a given day using historical data. This paper evaluates the dataset in ways that have yet to be explored, and provides a great baseline understanding of what is possible for the future of transportation.