For an optimal binary search tree T with a subtree S(d) at a distance d from the root of T, we study the ratio of the weight of S(d) to the weight of T. The maximum possible value, which we call ρ(d), of the ratio of weights, is found to have an upper bound of 2/F_d+3 where F_i is the ith Fibonacci number. For d = 1, 2, 3, and 4, the bound is shown to be tight. For larger d, the Fibonacci bound gives ρ(d) = O(ϕ^d) where ϕ ~ .61803 is the golden ratio. By giving a particular set of optimal trees, we prove ρ(d) = Ω((.58578 ... )^d), and believe a similar proof follows for ρ(d) = Ω((.60179 ... )^d). If we include frequencies for unsuccessful searches in the optimal binary search trees, the Fibonacci bound is found to be tight.