- Perone, Marcelo J;
- Bertera, Suzanne;
- Shufesky, William J;
- Divito, Sherrie J;
- Montecalvo, Angela;
- Mathers, Alicia R;
- Larregina, Adriana T;
- Pang, Mabel;
- Seth, Nilufer;
- Wucherpfennig, Kai W;
- Trucco, Massimo;
- Baum, Linda G;
- Morelli, Adrian E
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that targets the beta-cells of the pancreas. We investigated the ability of soluble galectin-1 (gal-1), an endogenous lectin that promotes T cell apoptosis, to down-regulate the T cell response that destroys the pancreatic beta-cells. We demonstrated that in nonobese diabetic (NOD) mice, gal-1 therapy reduces significantly the amount of Th1 cells, augments the number of T cells secreting IL-4 or IL-10 specific for islet cell Ag, and causes peripheral deletion of beta-cell-reactive T cells. Administration of gal-1 prevented the onset of hyperglycemia in NOD mice at early and subclinical stages of T1D. Preventive gal-1 therapy shifted the composition of the insulitis into an infiltrate that did not invade the islets and that contained a significantly reduced number of Th1 cells and a higher percentage of CD4(+) T cells with content of IL-4, IL-5, or IL-10. The beneficial effects of gal-1 correlated with the ability of the lectin to trigger apoptosis of the T cell subsets that cause beta-cell damage while sparing naive T cells, Th2 lymphocytes, and regulatory T cells in NOD mice. Importantly, gal-1 reversed beta-cell autoimmunity and hyperglycemia in NOD mice with ongoing T1D. Because gal-1 therapy did not cause major side effects or beta-cell toxicity in NOD mice, the use of gal-1 to control beta-cell autoimmunity represents a novel alternative for treatment of subclinical or ongoing T1D.