Microbes have a dominant role in nutrient cycling processes in the world’s deserts, where growth and activity are limited by the availability of water. In order to understand the dynamics of water availability in a desert system and how it may affect the soil microbiome, we analysed soil temperature and relative humidity fluctuations recorded between April 2018 and April 2020 across a precipitation gradient in the Namib Desert and compared them with recorded data from satellites and nearby weather stations. This allowed us to assess the possible impact of fog and rain events in terms of biologically-available water. Using published literature on the water activity limits for various physiological processes in microorganisms, we were able to infer the annual ‘metabolic windows’ for desert microbial communities across the longitudinal precipitation gradient. Specifically, soil surface microbial communities were estimated to have the capacity for active growth for an average of 184- 363 hours per year with the duration heavily dependent on intermittent rainfall events. During the relatively wet period of April 2018 - March 2019, the maximum growth window was found in the hyper-arid central region of the transect (approximately 100 km from the coast). During the dryer 2019- 2020 period, there was almost no predicted growth capacity in the hyper-arid region but substantial metabolic windows both near the coast and for the eastern inland areas, where water input comes in the form of fog and moist coastal air, and higher rainfall, respectively. As the first detailed study of the temperature and relative humidity characteristics of Namib Desert near-surface soils, this study provides valuable insights into the biogeography of microbial communities. In addition, the estimates for organismal functionality calculated in this study offer a baseline for future quantitation of the impacts of climate change on the functional capacity of desert soil microbiomes.