Photodetectors are one of the most important components for a future "Internet-of-Things" information society. Compared to the mainstream semiconductor-based photodetectors, emerging devices based on two-dimensional (2D) materials and ferroelectrics as well as their hybrid systems have been extensively studied in recent decades due to their outstanding performances and related interesting physical, electrical, and optoelectronic phenomena. In this paper, we review the photodetection based on 2D materials and ferroelectric hybrid systems. The fundamentals of 2D and ferroelectric materials as well as the interaction in the hybrid system will be introduced. Ferroelectricity modulated optoelectronic properties in the hybrid system will be discussed in detail. After the basics and figures of merit of photodetectors are summarized, the 2D-ferroelectrics devices with different structures including p-n diodes, Schottky diodes, and field-effect transistors will be reviewed and compared. The polarization of ferroelectrics offers the possibility of the modulation and enhancement of the photodetection in the hybrid detectors, which will be discussed in depth. Finally, the challenges and perspectives of the photodetectors based on 2D ferroelectrics will be proposed. This Review outlines the important aspects of the recent development of the hybrid system of 2D and ferroelectric materials, which could interact with each other and thus lead to photodetectors with higher performances. Such a Review will be helpful for the research of emerging physical phenomena and for the design of multifunctional nanoscale electronic and optoelectronic devices.