In this paper, the generalized SEIHRDP (susceptible-exposed-infective-hospitalized-recovered-death-insusceptible) fractional-order epidemic model is established with individual migration. Firstly, the global properties of the proposed system are studied. Particularly, the sensitivity of parameters to the basic reproduction number are analyzed both theoretically and numerically. Secondly, according to the real data in India and Brazil, it can all be concluded that the bilinear incidence rate has a better description of COVID-19 transmission. Meanwhile, multi-peak situation is considered in China, and it is shown that the proposed system can better predict the next peak. Finally, taking individual migration between Los Angeles and New York as an example, the spread of COVID-19 between cities can be effectively controlled by limiting individual movement, enhancing nucleic acid testing and reducing individual contact.