The palladium(II)-catalyzed oxidative macrocyclization of bis(vinylboronate esters) is demonstrated as an efficient method for the synthesis of macrocyclic dienes. The macrocyclization reactions feature mild conditions due to a palladium(II) catalytic cycle which obviates the need for a high energy oxidative addition step of standard palladium(0) catalytic cycles. Instead, this oxidative coupling is promoted by chloroacetone as a terminal re-oxidant in the catalytic cycle. An extension of the oxidative coupling/macrocyclization strategy is highlighted where molecular oxygen may be used in place of chloroacetone as the terminal re-oxidant. Homocoupling reactions of vinylboronate esters served as a template to screen reaction conditions for this method. From these experiments, multiple reaction conditions gave the oxidative homocoupling product in high yield. These reaction conditions were successfully applied to the oxidative macrocyclization of a bis(vinylboronate ester) using molecular oxygen as a re-oxidant.
Syntheses of strained cyclic dienes were accomplished via the palladium(II)-catalyzed oxidative cyclizations of terminal bis(vinylboronate esters). The reactions generated strained (E,E)-1,3-dienes that underwent spontaneous 4π-electrocyclizations to form bicyclic cyclobutenes. Formation of the cyclobutenes is driven by strain in the medium-ring (E,E)-1,3-diene intermediates. Thermal ring openings of the cyclobutenes give (Z,Z)-1,3-diene products, again for thermodynamic reasons. These results are in contrast with typical acyclic trans-3,4-dialkyl cyclobutenes, which favor outward torquoselective ring-openings to give (E,E)-1,3-dienes. DFT calculations verified the thermodynamic versus kinetic control of the reactions and kinetic studies are in excellent agreement with the calculated energy changes.
Investigations on the transannular Pauson-Khand reaction are also highlighted. The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentenones through the efficient [2+2+1] cycloaddition of dicobalt alkyne complexes with alkenes. While intermolecular and intramolecular variants are widely known, transannular versions of this reaction are unknown and the basis of this study. Our successful transannular Pauson-Khand reaction required a cyclic enyne incorporating one short three-membered linker chain and a rigid aryl linker in the backbone of the long linker chain. This rigidity of the aryl linker is proposed to facilitate the transannular [2+2+1] cyclization. Computational studies revealed that transannular Pauson-Khand reactions are thermodynamically favored for cyclic enynes featuring a long linker of at least 5 carbons, but with smaller chains the reactions are thermodynamically disfavored. Experimental studies show that long linking chains with more than 5 members are required to prevent to steric interactions between the dicobalt hexacarbonyl moiety and the linking chain to allow the reaction to be kinetically favored.
The final part of this work highlights progress towards the total synthesis of (+)-kingianin A. This natural product was isolated as a racemic mixture from the bark of Endiandra kingiana and is an inhibitor of antiapoptotic protein Bcl-Xl, highlighting its potential use in cancer treatments. Its structure is proposed to arise from an intermolecular Diels-Alder dimerization reaction of bicyclo[4.2.0]octadiene fragments derived from an 8π/6π-electrocyclization cascade. Although two total syntheses of (±)-kingianin A have been reported, an enantioselective synthesis has not been achieved and is the purpose of this study. This synthetic route begins from L-(+)-dimethyl tartrate, a cheap and commercially available starting material, and aims to follow a biomimetic synthetic pathway featuring a substrate controlled diastereoselective palladium(II)-catalyzed oxidative cyclization and 8π/6π-electrocyclization cascade. Although the feasibility of this cascade pathway has not yet been realized, key synthetic transformations to install the requisite carbocyclic framework of (+)-kingianin A have been discovered, paving the way for future investigations on the palladium(II)-catalyzed coupling/electrocyclization cascade and completion of the synthesis.