We derive relations between theoretical properties of restricted Boltzmann
machines (RBMs), popular machine learning models which form the building blocks
of deep learning models, and several natural notions from discrete mathematics
and convex geometry. We give implications and equivalences relating
RBM-representable probability distributions, perfectly reconstructible inputs,
Hamming modes, zonotopes and zonosets, point configurations in hyperplane
arrangements, linear threshold codes, and multi-covering numbers of hypercubes.
As a motivating application, we prove results on the relative representational
power of mixtures of product distributions and products of mixtures of pairs of
product distributions (RBMs) that formally justify widely held intuitions about
distributed representations. In particular, we show that a mixture of products
requiring an exponentially larger number of parameters is needed to represent
the probability distributions which can be obtained as products of mixtures.