A combination of query-by-visual-example (QBVE) and semantic retrieval (SR), denoted as query-by-semantic-example (QBSE), is proposed. Images are labeled with respect to a vocabulary of visual concepts, as is usual in SR. Each image is then represented by a vector, referred to as a semantic multinomial, of posterior concept probabilities. Retrieval is based on the query-by-example paradigm: the user provides a query image, for which 1) a semantic multinomial is computed and 2) matched to those in the database. QBSE is shown to have two main properties of interest, one mostly practical and the other philosophical. From a practical standpoint, because it inherits the generalization ability of SR inside the space of known visual concepts (referred to as the semantic space) but performs much better outside of it, QBSE produces retrieval systems that are more accurate than what was previously possible. Philosophically, because it allows a direct comparison of visual and semantic representations under a common query paradigm, QBSE enables the design of experiments that explicitly test the value of semantic representations for image retrieval. An implementation of QBSE under the minimum probability of error (MPE) retrieval framework, previously applied with success to both QBVE and SR, is proposed, and used to demonstrate the two properties. In particular, an extensive objective comparison of QBSE with QBVE is presented, showing that the former significantly outperforms the latter both inside and outside the semantic space. By carefully controlling the structure of the semantic space, it is also shown that this improvement can only be attributed to the semantic nature of the representation on which QBSE is based.
A probabilistic formulation for semantic image annotation and retrieval is proposed. Annotation and retrieval are posed as classification problems where each class is defined as the group of database images labeled with a common semantic label. It is shown that, by establishing this one-to-one correspondence between semantic labels and semantic classes, a minimum probability of error annotation and retrieval are feasible with algorithms that are 1) conceptually simple, 2) computationally efficient, and 3) do not require prior semantic segmentation of training images. In particular, images are represented as bags of localized feature vectors, a mixture density estimated for each image, and the mixtures associated with all images annotated with a common semantic label pooled into a density estimate for the corresponding semantic class. This pooling is justified by a multiple instance learning argument and performed efficiently with a hierarchical extension of expectation-maximization. The benefits of the supervised formulation over the more complex, and currently popular, joint modeling of semantic label and visual feature distributions are illustrated through theoretical arguments and extensive experiments. The supervised formulation is shown to achieve higher accuracy than various previously published methods at a fraction of their computational cost. Finally, the proposed method is shown to be fairly robust to parameter tuning.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.