Retinal vascular inflammation is a common characteristic of diabetes. It is marked by upregulation of a major retinal endothelial cell adhesion molecule ICAM-1 that promotes leukocyte-endothelial adhesion. The adherent leukocytes subsequently release cytotoxic, hyperpermeability and pro-inflammatory factors to cause extensive vascular damage in the retina that often lead to diabetic retinopathy (DR), a vision-threatening condition that affects nearly 40% of all people with diabetes. Past studies have identified retinal endothelial ICAM-1 expression as a rate-limiting step in DR pathogenesis because inhibiting it blocked DR progression in vivo. A common anti-ICAM-1 therapy for DR involves the use of salicylates that block activation of NF-KB, a major transcription factor required for ICAM-1 upregulation. However, the clinically-used high levels of salicylates cause severe adverse off-target effects in the body. To address this major limitation, this
work describes the use of biomimetic nanoparticles (NPs) that selectively deliver salicylate to ICAM-1-expressing retinal endothelial cells (ECs) and blocks leukocyte-EC adhesion. Specifically, these biomimetic NPs are derived from red blood cell membranes, surface modified with an ICAM-1-targeting single chain variable fragment (scFv), and loaded with sodium salicylate. Detailed physicochemical characterization revealed that these NPs are ~16035 nm in diameter, successfully conjugate anti-ICAM-1 scFv on their surface, and exhibit ~45% drug incorporation. Importantly, in vitro studies show that these drug-loaded NPs undergo preferential (~2-fold greater) uptake in ICAM-1-expressing retinal ECs and, crucially, exhibit a remarkable 700-fold greater efficacy of sodium salicylate in blocking leukocyte-EC adhesion. These promising findings lay the foundation for more detailed assessment of this anti-inflammatory nanotherapeutic as a new and improved treatment strategy for DR.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.