Reachability analysis is an attractive technique for analysis of concurrent programs because it is simple and relatively straightforward to automate, and can be used in conjunction with model-checking procedures to check for application-specific as well as general properties. Several techniques have been proposed differing mainly on the model used; some of these propose the use of flowgraph based models, some others of Petri nets.
This paper addresses the question: What essential difference does it make, if any, what sort of finite-state model we extract from program texts for purposes of reachability analysis? How do they differ in expressive power, decision power, or accuracy? Since each is intended to model synchronization structure while abstracting away other features, one would expect them to be roughly equivalent.
We confirm that there is no essential semantic difference between the most well known models proposed in the literature by providing algorithms for translation among these models. This implies that the choice of model rests on other factors, including convenience and efficiency.
Since combinatorial explosion is the primary impediment to application of reachability analysis, a particular concern in choosing a model is facilitating divide-and-conquer analysis of large programs. Recently, much interest in finite-state verification systems has centered on algebraic theories of concurrency. Yeh and Young have exploited algebraic structure to decompose reachability analysis based on a flowgraph model. The semantic equivalence of graph and Petri net based models suggests that one ought to be able to apply a similar strategy for decomposing Petri nets. We show this is indeed possible through application of category theory.