Purpose
Cystic fibrosis (CF) is a multisystem genetic disease caused by dysfunction of the epithelial anionic channel Cystic Fibrosis Transmembrane conductance Regulator (CFTR). Decreased mucociliary clearance because of thickened mucus is part of the pulmonary disease pathophysiology. It is controversial if the thickened airway surface liquid (ASL) is caused by the deficient chloride secretion and excessive sodium (through ENaC) and water hyperabsorption from the periciliar fluid or by the lack of bicarbonate secretion with relative acidification of the ASL. Correlations between the magnitude of in vivo chloride conductance with phenotypic characteristics and CF genotype can help to elucidate these mechanisms and direct to new treatments.Methods
Nasal potential difference was measured in 28 CF patients (age from 0.3 to 28 year) and correlated with pulmonary function, pancreatic phenotype, pulmonary colonization and genotype severity.Results
The CFTR-chloride conductance was better in older patients (r = 0.40; P = 0.03), in patients with better pulmonary function (r = 0.48; P = 0.01), and was associated with genotype severity. Higher chloride diffusion in the presence of a favorable chemical gradient was associated with Pseudomonas aeruginosa negativity (P < 0.05). More negative NPDmax was associated with pancreatic insufficiency (P < 0.01) as well with genotype severity, but not with the pulmonary function.Conclusions
The anion permeability through CFTR, mainly chloride, but bicarbonate as well, is the most critical factor in CF airway pathophysiology. Treatments primarily directed to correct CFTR function and/or airway acidity are clearly a priority.