- Lamb, James;
- Cao, Minsong;
- Kishan, Amar;
- Agazaryan, Nzhde;
- Thomas, David H;
- Shaverdian, Narek;
- Yang, Yingli;
- Ray, Suzette;
- Low, Daniel A;
- Raldow, Ann;
- Steinberg, Michael L;
- Lee, Percy;
- Kishan, Amar U;
- Raldow, Ann C
Onboard magnetic resonance imaging (MRI) guided radiotherapy is now clinically available in nine centers in the world. This technology has facilitated the clinical implementation of online adaptive radiotherapy (OART), or the ability to alter the daily treatment plan based on tumor and anatomical changes in real-time while the patient is on the treatment table. However, due to the time sensitive nature of OART, implementation in a large and busy clinic has many potential obstacles as well as patient-related safety considerations. In this work, we have described the implementation of this new process of care in the Department of Radiation Oncology at the University of California, Los Angeles (UCLA). We describe the rationale, the initial challenges such as treatment time considerations, technical issues during the process of re-contouring, re-optimization, quality assurance, as well as our current solutions to overcome these challenges. In addition, we describe the implementation of a coverage system with a physician of the day as well as online planners (physicists or dosimetrists) to oversee each OART treatment with patient-specific 'hand-off' directives from the patient's treating physician. The purpose of this effort is to streamline the process without compromising treatment quality and patient safety. As more MRI-guided radiotherapy programs come online, we hope that our experience can facilitate successful adoption of OART in a way that maximally benefits the patient.