Distributed embedded sensor networks are now being successfully deployed in environmental monitoring of natural phenomena as well as for applications in commerce and physical security. Distributed architectures have been developed for cooperative detection, scalable data transport, and other capabilities and services. However, the complexity of environmental phenomena has introduced a new set of challenges related to sensing uncertainty associated with the unpredictable presence of obstacles to sensing that appear in the environment. These obstacles may dramatically reduce the effectiveness of distributed monitoring. Thus, a new distributed, embedded, computing attribute, self-awareness, must be developed and provided to distributed sensor systems. Selfawareness must provide the ability for a deployed system to autonomously detect and reduce its own sensing uncertainty. The physical constraints encountered by sensing require physical reconfiguration for detection and reduction of sensing uncertainty. Networked Infomechanical Systems (NIMS) consisting of distributed, embedded computing systems provides autonomous physical configuration through controlled mobility. The requirements that lead to NIMS, the implementation of NIMS technology, and its first applications are discussed here.
Monitoring of environmental phenomena with embedded networked sensing confronts the challenges of both unpredictable variability in the spatial distribution of phenomena, coupled with demands for a high spatial sampling rate in three dimensions. For example, low distortion mapping of critical solar radiation properties in forest environments may require two-dimensional spatial sampling rates of greater than 10 samples/m2 over transects exceeding 1000 m2 . Clearly, adequate sampling coverage of such a transect requires an impractically large number of sensing nodes. A new approach, Networked Infomechanical System (NIMS), has been introduced to combine autonomous-articulated and static sensor nodes enabling sufficient spatiotemporal sampling density over large transects to meet a general set of environmental mapping demands.
This paper describes our work on a critical parts of NIMS, the Task Allocation module. We present our methodologies and the two basic greedy Task Allocation policies - based on time of the task arrival (Time policy) and distance from the robot to the task (Distance policy). We present results from NIMS deployed in a forest reserve and from a lab testbed. The results show that both policies are adequate for the task of spatiotemporal sampling, but also complement each other. Finally, we suggest the future direction of research that would both help us better quantify the performance of our system and create more complex policies combining time, distance, information gain, etc.
Distributed embedded sensor networks are now being successfully deployed in environmental monitoring of natural phenomena as well as for applications in commerce and physical security. While substantial progress in sensor network performance has appeared, new challenges have also emerged as these systems have been deployed in the natural environment. First, in order to achieve minimum sensing fidelity performance, the rapid spatiotemporal variation of environmental phenomena requires impractical deployment densities. The presence of obstacles in the environment introduces sensing uncertainty and degrades the performance of sensor fusion systems in particular for the many new applications of image sensing. The physical obstacles encountered by sensing may be circumvented by a new mobile sensing method or Networked Infomechanical Systems (NIMS). NIMS integrates distributed, embedded sensing and computing systems with infrastructure-supported mobility. NIMS now includes coordinated mobility methods that exploits adaptive articulation of sensor perspective and location as well as management of sensor population to provide the greatest certainty in sensor fusion results. The architecture, applications, and implementation of NIMS will be discussed here. In addition, results of environmentally-adaptive sampling, and direct measurement of sensing uncertainty will be described.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.