Acanthamoeba is a genus encompassing several species of free-living amoeba. These amoeba are most notably associated with Acanthamoeba keratitis, a severe corneal infection that can lead to permanent blindness. While drug therapies exist to treat Acanthamoeba keratitis, literature reports of recalcitrance and treatment failure are not uncommon. This dissertation compiles my work in drug screening and evaluating conazoles as novel treatment options for Acanthamoeba keratitis.
Chapter 1. Acanthamoeba encompasses several species of free-living ameba encountered commonly throughout the environment. Unfortunately, these species of ameba can cause opportunistic infections that result in Acanthamoeba keratitis, granulomatous amebic encephalitis, and occasionally systemic infection.While several biguanide and diamidine antimicrobial agents are available to clinicians to effectively treat Acanthamoeba keratitis, no singular treatment can effectively treat every Acanthamoeba keratitis case. Efforts to identify new anti-Acanthamoeba agents include trophozoite cell viability assays, which are amenable to high-throughput screening. Cysticidal assays remain largely manual and would benefit from further automation development. Additionally, the existing literature on the effectiveness of various azole antifungal agents for treating Acanthamoeba keratitis is incomplete or contradictory, suggesting the need for a systematic review of all azoles against different pathogenic Acanthamoeba strains.
Chapter 2. Current treatments for Acanthamoeba keratitis rely on a combination of chlorhexidine gluconate, propamidine isethionate, and polyhexamethylene biguanide. These disinfectants are nonspecific and inherently toxic, which limits their effectiveness. Furthermore, in 10% of cases, recurrent infection ensues due to the difficulty in killing both trophozoites and double-walled cysts. Therefore, development of efficient, safe, and target-specific drugs which are capable of preventing recurrent Acanthamoeba infection is a critical unmet need for averting blindness. Since both trophozoites and cysts contain specific sets of membrane sterols, we hypothesized that antifungal drugs targeting sterol 14-demethylase (CYP51), known as conazoles, would have deleterious effects on A. castellanii trophozoites and cysts. To test this hypothesis, we first performed a systematic screen of the FDA-approved conazoles against A. castellanii trophozoites using a bioluminescence-based viability assay adapted and optimized for Acanthamoeba. The most potent drugs were then evaluated against cysts. Isavuconazole and posaconazole demonstrated low nanomolar potency against trophozoites of three clinical strains of A. castellanii. Furthermore, isavuconazole killed trophozoites within 24 h and suppressed excystment of preformed Acanthamoeba cysts into trophozoites. The rapid action of isavuconazole was also evident from the morphological changes at nanomolar drug concentrations causing rounding of trophozoites within 24 h of exposure. Given that isavuconazole has an excellent safety profile, is well tolerated in humans, and blocks A. castellanii excystation, this opens an opportunity for the cost-effective repurposing of isavuconazole for the treatment of primary and recurring Acanthamoeba keratitis.
Chapter 3. Cytochromes P450 (P450, CYP) metabolize a wide variety of endogenous and exogenous lipophilic molecules, including most drugs. Sterol 14α-demethylase (CYP51) is a target for antifungal drugs known as conazoles. Using X-ray crystallography, we have discovered a domain-swap homodimerization mode in CYP51 from a human pathogen, Acanthamoeba castellanii CYP51 (AcCYP51). Recombinant AcCYP51 with a truncated transmembrane helix was purified as a heterogeneous mixture corresponding to the dimer and monomer units. Spectral analyses of these two populations have shown that the CO-bound ferrous form of the dimeric protein absorbed at 448 nm (catalytically competent form), whereas the monomeric form absorbed at 420 nm (catalytically incompetent form). AcCYP51 dimerized head-to-head via N-termini swapping, resulting in formation of a nonplanar protein-protein interface exceeding 2000 Å2 with a total solvation energy gain of -35.4 kcal/mol. In the dimer, the protomers faced each other through the F and G α-helices, thus blocking the substrate access channel. In the presence of the drugs clotrimazole and isavuconazole, the AcCYP51 drug complexes crystallized as monomers. Although clotrimazole-bound AcCYP51 adopted a typical CYP monomer structure, isavuconazole-bound AcCYP51 failed to refold 74 N-terminal residues. The failure of AcCYP51 to fully refold upon inhibitor binding in vivo would cause an irreversible loss of a structurally aberrant enzyme through proteolytic degradation. This assumption explains the superior potency of isavuconazole against A. castellanii. The dimerization mode observed in this work is compatible with membrane association and may be relevant to other members of the CYP family of biologic, medical, and pharmacological importance.
Chapter 4. Acanthamoeba species of amebae are often associated with Acanthamoeba keratitis, a severe corneal infection. Isavuconazonium sulfate is an FDA-approved drug for the treatment of invasive as-pergillosis and mucormycosis. This prodrug is metabolized into the active isavuconazole moiety. Isavuconazole was previously identified to have amebicidal and cysticidal activity against Acanthamoeba T4 strains, but the activity of its prodrug, isavuconazonium sulfate, against trophozoites and cysts remains unknown. Since it is not known if isavuconazonium can be metabolized into isavuconazole in the human eye, we evaluated the activities of isavuconazonium sulfate against trophozoites and cysts of three T4 genotype strains of Acanthamoeba. Isavuconazonium displayed amebicidal activity at nanomolar concentrations as low as 1.4 nM and prevented excystation of cysts at concentrations as low as 136 μM. We also investigated the cysticidial activity of isavuconazonium sulfate in combination with a currently used amebicidal drug polyhexamethylene biguanide (PHMB). Although combination of isavuconazonium with PHMB did not elicit an obvious synergistic cysticidal activity, the combination did not cause an antagonistic effect on the cysts of Acanthaomoeba T4 strains. Collectively, these findings suggest isavuconazonium retains potency against Acanthamoeba T4 strains and could be adapted for Acanthamoeba keratitis treatment.
Chapter 5. Traditional cysticidal assays for Acanthamoeba species revolve around treating cysts with compounds and manually observing the culture for evidence of excystation. This method is time-consuming, labor-intensive, and low-throughput. We adapted and trained a YOLOv3 machine learning, object-detection neural network to recognize A. castellanii trophozoites and cysts in microscopy images to develop an automated cysticidal assay. This trained neural network was used to count trophozoites in wells treated with marine-derived compounds of interest to determine if a compound treatment was cysticidal. We validated this new assay with known cysticidal and non-cysticidal compounds. In addition, we undertook a large-scale bioluminescence-based screen of 9,286 structurally-unique marine microbial metabolites against the trophozoites of A. castellanii and identified 29 trophocidal hits. These hits were then subjected to this machine learning-based automated cysticidal assay. One marine microbial metabolite fraction was identified as both trophocidal and cysticidal.