The torus T of projective space also acts on the Hilbert scheme of subschemes of projective space. The T-graph of the Hilbert scheme has vertices the fixed points of this action, and edges connecting pairs of fixed points in the closure of a one-dimensional orbit. In general this graph depends on the underlying field. We construct a subgraph, which we call the spine, of the T-graph of Hilbm(A2) that is independent of the choice of infinite field. For certain edges in the spine we also give a description of the tropical ideal, in the sense of tropical scheme theory, of a general ideal in the edge. This gives a more refined understanding of these edges, and of the tropical stratification of the Hilbert scheme.
Mathematics Subject Classifications: 14C05, 14T10, 14L30
Keywords: Hilbert scheme, T-graph, tropical ideal
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.