The thermal (3 + 2) dipolar azide-alkyne cycloaddition, proceeding without copper or strained alkynes, is an underutilized ligation with potential applications in materials, bioorganic, and synthetic chemistry. Herein, we investigate the effects of alkyne substitution on the rate of this reaction, both experimentally and computationally. Electron-withdrawing groups accelerate the reaction, providing a range of relative rates from 1.0 to 2100 between the slowest and fastest alkynes studied. Unexpectedly, aryl groups conjugated to the alkyne significantly retard the reaction rate. In contrast, a sulfonyl, ester-substituted alkyne is reactive enough that it couples with an azide at room temperature in a few hours. This reactivity scale should provide a guide to those who wish to use this ligation under mild conditions.