Oxanorbornadienes (ONDs) undergo facile Michael addition with thiols and then fragment by a retro-Diels-Alder (rDA) reaction, a unique two-step sequence among electrophilic cleavable linkages. The rDA reaction rate was explored as a function of the furan structure, with substituents at the 2- and 5-positions found to be the most influential and the fragmentation rate to be inversely correlated with electron-withdrawing ability. Density functional theory calculations provided an excellent correlation with the experimentally measured OND rDA rates.