Recent measurement at a previously studied location illustrates the magnitude of increases in ocean ambient noise in the Northeast Pacific over the past four decades. Continuous measurements west of San Nicolas Island, California, over 138 days, spanning 2003-2004 are compared to measurements made during the 1960s at the same site. Ambient noise levels at 30-50 Hz were 10-12 dB higher (95% CI=2.6 dB) in 2003-2004 than in 1964-1966, suggesting an average noise increase rate of 2.5-3 dB per decade. Above 50 Hz the noise level differences between recording periods gradually diminished to only 1-3 dB at 100-300 Hz. Above 300 Hz the 1964-1966 ambient noise levels were higher than in 2003-2004, owing to a diel component which was absent in the more recent data. Low frequency (10-50 Hz) ocean ambient noise levels are closely related to shipping vessel traffic. The number of commercial vessels plying the world's oceans approximately doubled between 1965 and 2003 and the gross tonnage quadrupled, with a corresponding increase in horsepower. Increases in commercial shipping are believed to account for the observed low-frequency ambient noise increase. (c) 2006 Acoustical Society of America.
A finite element model is formulated to study the steady-state vibration response of the anatomy of a whale (Cetacea) submerged in seawater. The anatomy was reconstructed from a combination of two-dimensional (2D) computed tomography (CT) scan images, identification of Hounsfield units with tissue types, and mapping of mechanical properties. A partial differential equation model describes the motion of the tissues within a Lagrangean framework. The computational model was applied to the study of the response of the tissues within the head of a neonate Cuvier's beaked whale Ziphius cavirostris. The characteristics of the sound stimulus was a continuous wave excitation at 3500 Hz and 180 dB re: 1 mu Pa received level, incident as a plane wave. We model the beaked whale tissues embedded within a volume of seawater. To account for the finite dimensions of the computational volume, we increased the damping for viscous shear stresses within the water volume, in an attempt to reduce the contribution of waves reflected from the boundaries of the computational box. The mechanical response of the tissues was simulated including: strain amplitude; dissipated power; and pressure. The tissues are not likely to suffer direct mechanical or thermal damage, within the range of parameters tested. (c) 2006 Acoustical Society of America.
To understand cetacean ecology and habitat, a new component has been added to the CalCOF1 ecosystein studies that have beer) conducted offshore of southern California over the last half century. In 2004, we initiated visual and acoustic line-transect surveys during)(1 CalCOFI cruises and long-term acoustic monitoring at selected CalCOFI stations. Visual monitoring provides excellent data for highly visible species in calm to moderate weather. The most commonly sighted species oil visual surveys conducted between July 2004 and November 2005 were blue, fill, humpback, and sperm whales, and Pacific white-sided, short-beaked common, and long-beaked common dolphins. Blue, fin, and sperm whales were sighted more frequently in summer to fill months, while northern right whale dolphins and Dall's porpoises were sighted more frequently in winter and spring. Spatial patterns of occurrence are evident for all species within the study area.
A species detectorclassifier is presented which decides whether or not short groups of clicks are produced by one or more individuals from the following species: Blainville’s beaked whales, short-finned pilot whales, and Risso’s dolphins. The system locates individual clicks using the Teager energy operator and then constructs feature vectors for these clicks using cepstral analysis. Two different types of detectors confirm or reject the presence of each species. Gaussian mixture models (GMMs) are used to model time series independent characteristics of the species feature vector distributions. Support vector machines (SVMs) are used to model the boundaries between each species’ feature distribution and that of other species. Detection error tradeoff curves for all three species are shown with the following equal error rates: Blainville’s beaked whales (GMM 3.32%/SVM 5.54%), pilot whales (GMM 16.18%/SVM 15.00%), and Risso’s dolphins (GMM 0.03%/SVM 0.70%).
An acoustic record from Cross Seamount, southwest of Hawaii, revealed sounds characteristic of beaked whale echolocation at the same relative abundance year-around !270 of 356 days", occurring almost entirely at night. The most common sound had a linear frequency upsweep from 35 to 100 kHz !the bandwidth of recording", an interpulse interval of 0.11 s, and duration of at least 932 !s. A less common upsweep sound with shorter interpulse interval and slower sweep rate was also present. Sounds matching Cuvier’s beaked whale were not detected, and Blainville’s beaked whale sounds were detected on only one occasion.
The spectral and temporal properties of echolocation clicks and the use of clicks for species classification are investigated for five species of free-ranging dolphins found offshore of southern California: short-beaked common !Delphinus delphis", long-beaked common !D. capensis", Risso’s !Grampus griseus", Pacific white-sided !Lagenorhynchus obliquidens", and bottlenose !Tursiops truncatus" dolphins. Spectral properties are compared among the five species and unique spectral peak and notch patterns are described for two species. The spectral peak mean values from Pacific white-sided dolphin clicks are 22.2, 26.6, 33.7, and 37.3 kHz and from Risso’s dolphins are 22.4, 25.5, 30.5, and 38.8 kHz. The spectral notch mean values from Pacific white-sided dolphin clicks are 19.0, 24.5, and 29.7 kHz and from Risso’s dolphins are 19.6, 27.7, and 35.9 kHz. Analysis of variance analyses indicate that spectral peaks and notches within the frequency band 24–35 kHz are distinct between the two species and exhibit low variation within each species. Post hoc tests divide Pacific white-sided dolphin recordings into two distinct subsets containing different click types, which are hypothesized to represent the different populations that occur within the region. Bottlenose and common dolphin clicks do not show consistent patterns of spectral peaks or notches within the frequency band examined !1–100 kHz".
Sei whales are the least well known acoustically of all the rorquals, with only two brief descriptions of their calls previously reported. Recordings of low-frequency tonal and frequency swept calls were made near a group of four or five sei whales in waters west of the Antarctic Peninsula on 19 February 2003. These whales also produced broadband sounds which can be described as growls or whooshes. Many of the tonal and frequency swept calls 30 out of 68 consist of multiple parts with a frequency step between the two parts, this being the most unique characteristic of the calls, allowing them to be distinguished from the calls of other whale species. The average duration of the tonal calls is 0.45 ± 0.3 s and the average frequency is 433 ± 192 Hz. Using a calibrated seafloor recorder to determine the absolute calibration of a sonobuoy system, the maximum source level of the tonal calls was 156 ± 3.6 dB re 1 Pa at 1 m. Each call had different character and there was no temporal pattern in the calling.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.