The deposition of films under normal and off-normal angle of incidence has been investigated to show the relevance of non-sticking of and self-sputtering by energetic ions, leading to the formation of neutral atoms. The flow of energetic ions was obtained using a filtered cathodic arc system in high vacuum and therefore the ion flux had a broad energy distribution of typically 50-100 eV per ion. The range of materials included Cu, Ag, Au, Ti, and Ni. Consistent with molecular dynamics simulations published in the literature, the experiments show, for all materials, that the combined effects of non-sticking and self-sputtering are very significant, especially for large off-normal angles. Modest heating and intentional introduction of oxygen background affect the results.
A long-probe technique was utilized to record the expansion and retreat of the dynamic sheath around a spherical substrate immersed in pulsed cathode arc metal plasma. Positively biased, long cylindrical probes were placed on the side and downstream of a negatively pulsed biased stainless steel sphere of 1" (25.4 mm) diameter. The amplitude and width of the negative high voltage pulses (HVP) were 2 kV, 5 kV, 10 kV, and 2 mu s, 4 mu s, 10 mu s, respectively. The variation of the probe (electron) current during the HVP is a direct measure for the sheath expansion and retreat. Maximum sheath sizes were determined for the different parameters of the HVP. The expected rarefaction zone behind the biased sphere (wake) due to the fast plasma flow was clearly established and quantified.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.