Skip to main content
eScholarship
Open Access Publications from the University of California

Berkeley Law

Open Access Policy Deposits bannerUC Berkeley

This series is automatically populated with publications deposited by Berkeley Law researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

Cover page of Theorizing Transnational Fiduciary Law

Theorizing Transnational Fiduciary Law

(2020)

This symposium Article theorizes and assesses transnational legal ordering of fiduciary law. Fiduciary law imposes legally enforceable duties on those entrusted with discretionary authority over the interests of others. The fiduciary law of a state may apply to fiduciary relationships having a transnational (or even global) scope. Fiduciary norms themselves are transnational to the extent that they settle as governing legal norms in ways that transcend and permeate state boundaries. Curiously, however, fiduciary legal theory and transnational legal theory have yet to meet. This symposium takes the first steps towards a comprehensive theory of transnational fiduciary law. To assess transnational legal ordering of fiduciary law, one must study the extent of normative settlement across state boundaries. This can be done in terms of a meta concept of fiduciary law involving a transnational body of law, or in terms of the processes that give rise to discrete domains of fiduciary law to address particular problems as understood by relevant actors. Comparative legal analysis is critical for assessing the extent of concordance and divergence in the development and practice of fiduciary law across states. This Article introduces symposium articles that assess transnational fiduciary law as a meta concept; transnational legal ordering of fiduciary law in discrete domains; and comparative fiduciary law. Together, these articles suggest that processes of transnational legal ordering can give rise to transnational fiduciary law and the potential development of discrete transnational legal orders that transcend and permeate nation-states.

Cover page of Deep Generative Models for Fast Photon Shower Simulation in ATLAS

Deep Generative Models for Fast Photon Shower Simulation in ATLAS

(2024)

The need for large-scale production of highly accurate simulated event samples for the extensive physics programme of the ATLAS experiment at the Large Hadron Collider motivates the development of new simulation techniques. Building on the recent success of deep learning algorithms, variational autoencoders and generative adversarial networks are investigated for modelling the response of the central region of the ATLAS electromagnetic calorimeter to photons of various energies. The properties of synthesised showers are compared with showers from a full detector simulation using geant4. Both variational autoencoders and generative adversarial networks are capable of quickly simulating electromagnetic showers with correct total energies and stochasticity, though the modelling of some shower shape distributions requires more refinement. This feasibility study demonstrates the potential of using such algorithms for ATLAS fast calorimeter simulation in the future and shows a possible way to complement current simulation techniques.

Software Performance of the ATLAS Track Reconstruction for LHC Run 3

(2024)

Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pile-up) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two.

Determination of the Relative Sign of the Higgs Boson Couplings to W and Z Bosons Using WH Production via Vector-Boson Fusion with the ATLAS Detector

(2024)

The associated production of Higgs and W bosons via vector-boson fusion is highly sensitive to the relative sign of the Higgs boson couplings to W and Z bosons. In this Letter, two searches for this process are presented, using 140  fb−1 of proton-proton collision data at s=13  TeV recorded by the ATLAS detector at the LHC. The first search targets scenarios with opposite-sign couplings of the W and Z bosons to the Higgs boson, while the second targets standard model-like scenarios with same-sign couplings. Both analyses consider Higgs boson decays into a pair of b quarks and W boson decays with an electron or muon. The data exclude the opposite-sign coupling hypothesis with a significance beyond 5σ, and the observed (expected) upper limit set on the cross section for vector-boson fusion WH production is 9.0 (8.7) times the standard model value at 95% confidence level. © 2024 CERN, for the ATLAS Collaboration 2024 CERN

Cover page of Precise test of lepton flavour universality in \(\varvec{W}\)-boson decays into muons and electrons in \(\varvec{pp}\) collisions at \(\varvec{\sqrt{s}}=13\,\text {T}\text {e}\hspace{-1.00006pt}\text {V} \) with the ATLAS detector

Precise test of lepton flavour universality in \(\varvec{W}\)-boson decays into muons and electrons in \(\varvec{pp}\) collisions at \(\varvec{\sqrt{s}}=13\,\text {T}\text {e}\hspace{-1.00006pt}\text {V} \) with the ATLAS detector

(2024)

Abstract: The ratio of branching ratios of the W boson to muons and electrons, $$R^{\,\mu /e}_W={{\mathcal {B}}(W\rightarrow \mu u )}$$ R W μ / e = B ( W → μ ν ) /$${{\mathcal {B}}(W\rightarrow e u )}$$ B ( W → e ν ) , has been measured using $$140\,\text{ fb}^{-1}\,$$ 140 fb - 1 of pp collision data at $$\sqrt{s}=13$$ s = 13  $$\text {T}\text {e}\hspace{-1.00006pt}\text {V}$$ Te V collected with the ATLAS detector at the LHC, probing the universality of lepton couplings. The ratio is obtained from measurements of the $$t\bar{t}$$ t t ¯ production cross-section in the ee, $$e\mu $$ e μ and $$\mu \mu $$ μ μ dilepton final states. To reduce systematic uncertainties, it is normalised by the square root of the corresponding ratio $$R^{\,\mu \mu /ee}_Z$$ R Z μ μ / e e for the Z boson measured in inclusive $$Z\rightarrow ee$$ Z → e e and $$Z\rightarrow \mu \mu $$ Z → μ μ events. By using the precise value of $$R^{\,\mu \mu /ee}_Z$$ R Z μ μ / e e determined from $$e^+e^-$$ e + e - colliders, the ratio $$R^{\,\mu /e}_W$$ R W μ / e is determined to be $$\begin{aligned} R^{\,\mu /e}_W&= 0.9995\pm 0.0022\,\mathrm {(stat)}\,\pm 0.0036\,\mathrm {(syst)}\ &\quad \pm 0.0014\,\mathrm {(ext)} . \end{aligned}$$ R W μ / e = 0.9995 ± 0.0022 ( stat ) ± 0.0036 ( syst ) ± 0.0014 ( ext ) . The three uncertainties correspond to data statistics, experimental systematics and the external measurement of $$R^{\,\mu \mu /ee}_Z$$ R Z μ μ / e e , giving a total uncertainty of 0.0045, and confirming the Standard Model assumption of lepton flavour universality in W-boson decays at the 0.5% level.

Sensor response and radiation damage effects for 3D pixels in the ATLAS IBL Detector

(2024)

Abstract: Pixel sensors in 3D technology equip the outer ends of the staves of the Insertable B Layer (IBL), the innermost layer of the ATLAS Pixel Detector, which was installed before the start of LHC Run 2 in 2015. 3D pixel sensors are expected to exhibit more tolerance to radiation damage and are the technology of choice for the innermost layer in the ATLAS tracker upgrade for the HL-LHC programme. While the LHC has delivered an integrated luminosity of  ≃ 235 fb-1 since the start of Run 2, the 3D sensors have received a non-ionising energy deposition corresponding to a fluence of ≃ 8.5 × 1014 1 MeV neutron-equivalent cm-2 averaged over the sensor area. This paper presents results of measurements of the 3D pixel sensors' response during Run 2 and the first two years of Run 3, with predictions of its evolution until the end of Run 3 in 2025. Data are compared with radiation damage simulations, based on detailed maps of the electric field in the Si substrate, at various fluence levels and bias voltage values. These results illustrate the potential of 3D technology for pixel applications in high-radiation environments.