Skip to main content
eScholarship
Open Access Publications from the University of California

Heterogeneous global crop yield response to biochar: a meta-regression analysis

  • Author(s): Crane-Droesch, Andrew
  • Abiven, Samuel
  • Jeffery, Simon
  • Torn, Margaret S
  • et al.

Published Web Location

http://iopscience.iop.org/1748-9326/8/4/044049
No data is associated with this publication.
Abstract

Biochar may contribute to climate change mitigation at negative cost by sequestering photosynthetically fixed carbon in soil while increasing crop yields. The magnitude of biochar's potential in this regard will depend on crop yield benefits, which have not been well-characterized across different soils and biochars. Using data from 84 studies, we employ meta-analytical, missing data, and semiparametric statistical methods to explain heterogeneity in crop yield responses across different soils, biochars, and agricultural management factors, and then estimate potential changes in yield across different soil environments globally. We find that soil cation exchange capacity and organic carbon were strong predictors of yield response, with low cation exchange and low carbon associated with positive response. We also find that yield response increases over time since initial application, compared to non-biochar controls. High reported soil clay content and low soil pH were weaker predictors of higher yield response. No biochar parameters in our dataset—biochar pH, percentage carbon content, or temperature of pyrolysis—were significant predictors of yield impacts. Projecting our fitted model onto a global soil database, we find the largest potential increases in areas with highly weathered soils, such as those characterizing much of the humid tropics. Richer soils characterizing much of the world's important agricultural areas appear to be less likely to benefit from biochar.

Item not freely available? Link broken?
Report a problem accessing this item