Skip to main content
BC_n-symmetric abelian functions
Published Web Location
https://arxiv.org/pdf/math/0402113.pdfNo data is associated with this publication.
Abstract
We construct a family of BC_n-symmetric biorthogonal abelian functions generalizing Koornwinder's orthogonal polynomials, and prove a number of their properties, most notably analogues of Macdonald's conjectures. The construction is based on a direct construction for a special case generalizing Okounkov's interpolation polynomials. We show that these interpolation functions satisfy a collection of generalized hypergeometric identities, including new multivariate elliptic analogues of Jackson's summation and Bailey's transformation.