Nonlinear surface plasmons
Skip to main content
Open Access Publications from the University of California

Department of Mathematics

Faculty bannerUC Davis

Nonlinear surface plasmons

Published Web Location
No data is associated with this publication.

We derive an asymptotic equation for quasi-static, nonlinear surface plasmons propagating on a planar interface between isotropic media. The plasmons are nondispersive with a constant linearized frequency that is independent of their wavenumber. The spatial profile of a weakly nonlinear plasmon satisfies a nonlocal, cubically nonlinear evolution equation that couples its left-moving and right-moving Fourier components. We prove short-time existence of smooth solutions of the asymptotic equation and describe its Hamiltonian structure. We also prove global existence of weak solutions of a unidirectional reduction of the asymptotic equation. Numerical solutions show that nonlinear effects can lead to the strong spatial focusing of plasmons. Solutions of the unidirectional equation appear to remain smooth when they focus, but it is unclear whether or not focusing can lead to singularity formation in solutions of the bidirectional equation.

Item not freely available? Link broken?
Report a problem accessing this item