The equilibrium states for a model with two kinds of Bose condensation
Skip to main content
eScholarship
Open Access Publications from the University of California

Department of Mathematics

Faculty bannerUC Davis

The equilibrium states for a model with two kinds of Bose condensation

Published Web Location

https://arxiv.org/pdf/math-ph/0201029.pdf
No data is associated with this publication.
Abstract

We study the equilibrium Gibbs states for a Boson gas model, defined by Bru and Zagrebnov, which has two phase transitions of the Bose condensation type. The two phase transitions correspond to two distinct mechanisms by which these condensations can occur. The first (non-conventional) Bose condensation is mediated by a zero-mode interaction term in the Hamiltonian. The second is a transition due to saturation quite similar to the conventional Bose-Einstein (BE) condensation in the ideal Bose gas. Due to repulsive interaction in non-zero modes the model manifests a generalized type III, i.e., non-extensive BE condensation. Our main result is that, as in the ideal Bose gas, the conventional condensation is accompanied by a loss of strong equivalence of the canonical and grand canonical ensembles whereas the non-conventional one, due to the interaction, does not break the equivalence of ensembles. It is also interesting to note that the type of (generalized) condensate, I, II, or III (in the terminology of van den Berg, Lewis and Pule), has no effect on the equivalence of ensembles. These results are proved by computing the generating functional of the cyclic representation of the Canonical Commutation Relation (CCR) for the corresponding equilibrium Gibbs states.

Item not freely available? Link broken?
Report a problem accessing this item