Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Dynamic monitoring of oxidative DNA double-strand break and repair in cardiomyocytes

Published Web Location

http://www.sciencedirect.com/science/article/pii/S1054880715001490
No data is associated with this publication.
Abstract

DNA double-strand breaks (DSBs) are most dangerous lesions. To determine whether oxidative stress can induce DSBs and how they are repaired in cardiomyocytes (CMs), cultured neonatal rat CMs were treated with different doses of H2O2 and followed for up to 72 h for monitoring the spatiotemporal dynamics of DNA repair protein assembly/disassembly at DSB foci. The protein levels and foci numbers of histone H2AX phosphorylated at serine 139 (γ-H2AX) increased proportionally to 50, 100, and 200 μmol/L H2O2 after 30 min treatment. When H2O2 was at or above 400 μmol/L, γ-H2AX became predominantly pannuclear. After 30 min, 200 μmol/L of H2O2 treatment, γ-H2AX levels were highest within the first hour and then gradually declined during the recovery and returned to basal levels at 48 h. Among DNA damage transducer kinases, ataxia telangiectasia mutated (ATM) was significantly activated by H2O2 in contrast to mild activation of ATR (ATM and Rad3-related). A DSB binding protein, p53 binding protein 1, formed distinct nuclear foci that colocalized with γ-H2AX foci and phosphorylated ATM. Our findings indicate that DSBs can be induced by H2O2 and ATM is the main kinase to mediate DSB repair in CMs. Therefore, monitoring DSB repair can assess oxidative injury and response in CMs.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item