Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Aquaporin-4 reduces neuropathology in a mouse model of Alzheimer’s disease by remodeling peri-plaque astrocyte structure

Abstract

Redistribution of the water channel aquaporin-4 (AQP4) away from astrocyte endfeet and into parenchymal processes is a striking histological feature in mouse models of Alzheimer's disease (AD) and other neurological conditions with prominent astrogliosis. AQP4 redistribution has been proposed to impair bulk Aβ clearance in AD, resulting in increased amyloid deposition in the brain; however, this finding is controversial. Here, we provide evidence in support of a different and novel role of AQP4 in AD. We found that Aqp4 deletion significantly increased amyloid deposition in cerebral cortex of 5xFAD mice, with an increase in the relative number of fibrillar vs. dense core plaques. AQP4 deficient 5xFAD mice also showed a significant reduction in the density of GFAP labeled peri-plaque astrocyte processes. Microglial plaque coverage was also significantly reduced, suggesting astrocyte involvement in organizing the peri-plaque glial response. The alterations in peri-plaque glial structure were accompanied by increased neuronal uptake of Aβ and an increase in the number of dystrophic neurites surrounding plaques. On the basis of these findings, we propose that redistribution of AQP4 into the parenchymal processes facilitates astrocyte structural plasticity and the formation of a reactive glial net around plaques that protects neurons from the deleterious effects of Aβ aggregates. AQP4 redistribution may thus facilitate plaque containment and reduce neuropathology in AD.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View