Skip to main content
eScholarship
Open Access Publications from the University of California

Stressor interaction networks suggest antibiotic resistance co-opted from stress responses to temperature.

  • Author(s): Cruz-Loya, Mauricio
  • Kang, Tina Manzhu
  • Lozano, Natalie Ann
  • Watanabe, Rina
  • Tekin, Elif
  • Damoiseaux, Robert
  • Savage, Van M
  • Yeh, Pamela J
  • et al.

Published Web Location

https://www.nature.com/articles/s41396-018-0241-7?proof=true
No data is associated with this publication.
Abstract

Environmental factors like temperature, pressure, and pH partly shaped the evolution of life. As life progressed, new stressors (e.g., poisons and antibiotics) arose as part of an arms race among organisms. Here we ask if cells co-opted existing mechanisms to respond to new stressors, or whether new responses evolved de novo. We use a network-clustering approach based purely on phenotypic growth measurements and interactions among the effects of stressors on population growth. We apply this method to two types of stressors-temperature and antibiotics-to discover the extent to which their cellular responses overlap in Escherichia coli. Our clustering reveals that responses to low and high temperatures are clearly separated, and each is grouped with responses to antibiotics that have similar effects to cold or heat, respectively. As further support, we use a library of transcriptional fluorescent reporters to confirm heat-shock and cold-shock genes are induced by antibiotics. We also show strains evolved at high temperatures are more sensitive to antibiotics that mimic the effects of cold. Taken together, our results strongly suggest that temperature stress responses have been co-opted to deal with antibiotic stress.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item