Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Superpixel Embedding Network

Abstract

Superpixel segmentation is a fundamental computer vision technique that finds application in a multitude of high level computer vision tasks. Most state-of-the-art superpixel segmentation methods are unsupervised in nature and thus cannot fully utilize frequently occurring texture patterns or incorporate multiscale context. In this paper, we show that superpixel segmentation can be improved by leveraging the superior modeling power of deep convolutional autoencoders in a fully unsupervised manner. We pose the superpixel segmentation problem as one of manifold learning where pixels that belong to similar texture patterns are assigned near identical embedding vectors. The proposed deep network is able to learn image-wide and dataset-wide feature patterns and the relationships between them. This knowledge is used to segment and group pixels in a way that is consistent with a more global definition of pattern coherence. Experiments demonstrate that the superpixels obtained from the embeddings learned by the proposed method outperform the state-of-theart superpixel segmentation methods for boundary precision and recall values. Additionally, we find that semantic edges obtained from the superpixel embeddings to be significantly better than the contemporary unsupervised approaches.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View