Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Antibody Biomarkers Associated with Sterile Protection Induced by Controlled Human Malaria Infection under Chloroquine Prophylaxis

Abstract

Immunization with sporozoites under chloroquine chemoprophylaxis (CPS) induces distinctly preerythrocytic and long-lasting sterile protection against homologous controlled human malaria infection (CHMI). To identify possible humoral immune correlates of protection, plasma samples were collected from 38 CPS-immunized Dutch volunteers for analysis using a whole Plasmodium falciparum proteome microarray with 7,455 full-length or segmented protein features displaying about 91% of the total P. falciparum proteome. We identified 548 reactive antigens representing 483 unique proteins. Using the breadth of antibody responses for each subject in a mixture-model algorithm, we observed a trimodal pattern, with distinct groups of 16 low responders, 19 medium responders, and 3 high responders. Fifteen out of 16 low responders, 12 of the 19 medium responders, and 3 out of 3 high responders were fully protected from a challenge infection. In the medium-responder group, we identified six novel antigens associated with protection (area under the curve [AUC] value of ≥0.75; P < 0.05) and six other antigens that were specifically increased in nonprotected volunteers (AUC value of ≤0.25; P < 0.05). When used in combination, the multiantigen classifier predicts CPS-induced protective efficacy with 83% sensitivity and 88% specificity. The antibody response patterns characterized in this study represent surrogate markers that may provide rational guidance for clinical vaccine development.IMPORTANCE Infection by Plasmodium parasites has been a major cause of mortality and morbidity in humans for thousands of years. Despite the considerable reduction of deaths, according to the WHO, over 5 billion people are still at risk, with about 216 million worldwide cases occurring in 2016. More compelling, 15 countries in sub-Saharan Africa bore 80% of the worldwide malaria burden. Complete eradication has been challenging, and the development of an affordable and effective vaccine will go a long way in achieving elimination. However, identifying vaccine candidate targets has been difficult. In the present study, we use a highly effective immunization protocol that confers long-lasting sterile immunity in combination with a whole P. falciparum proteome microarray to identify antibody responses associated with protection. This study characterizes a novel antibody profile associated with sterile protective immunity and trimodal humoral responses that sheds light on the possible mechanism of CPS-induced immunity against P. falciparum parasites.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View