Weak Orientability of Matroids and Polynomial Equations
Skip to main content
eScholarship
Open Access Publications from the University of California

Weak Orientability of Matroids and Polynomial Equations

  • Author(s): De Loera, J. A.
  • Lee, J.
  • Margulies, S.
  • Miller, J.
  • et al.

Published Web Location

https://arxiv.org/pdf/1309.7719.pdf
No data is associated with this publication.
Abstract

This paper studies systems of polynomial equations that provide information about orientability of matroids. First, we study systems of linear equations over GF(2), originally alluded to by Bland and Jensen in their seminal paper on weak orientability. The Bland-Jensen linear equations for a matroid M have a solution if and only if M is weakly orientable. We use the Bland-Jensen system to determine weak orientability for all matroids on at most nine elements and all matroids between ten and twelve elements having rank three. Our experiments indicate that for small rank, about half the time, when a simple matroid is not orientable, it is already non-weakly orientable. Thus, about half of the small simple non-orientable matroids of rank three are not representable over fields having order congruent to three modulo four. For binary matroids, the Bland-Jensen linear systems provide a practical way to check orientability. Second, we present two extensions of the Bland-Jensen equations to slightly larger systems of non-linear polynomial equations. Our systems of polynomial equations have a solution if and only if the associated matroid M is orientable. The systems come in two versions, one directly extending the Bland-Jensen system for GF(2), and a different system working over other fields. We study some basic algebraic properties of these systems. Finally, we present an infinite family of non-weakly-orientable matroids, with growing rank and co-rank. We conjecture that these matroids are minor-minimal non-weakly-orientable matroids.

Item not freely available? Link broken?
Report a problem accessing this item