K-Decompositions and 3d Gauge Theories
Skip to main content
Open Access Publications from the University of California

Department of Mathematics

Faculty bannerUC Davis

K-Decompositions and 3d Gauge Theories

Published Web Location

No data is associated with this publication.

This paper combines several new constructions in mathematics and physics. Mathematically, we study framed flat PGL(K,C)-connections on a large class of 3-manifolds M with boundary. We define a space L_K(M) of framed flat connections on the boundary of M that extend to M. Our goal is to understand an open part of L_K(M) as a Lagrangian in the symplectic space of framed flat connections on the boundary, and as a K_2-Lagrangian, meaning that the K_2-avatar of the symplectic form restricts to zero. We construct an open part of L_K(M) from data assigned to a hypersimplicial K-decomposition of an ideal triangulation of M, generalizing Thurston's gluing equations in 3d hyperbolic geometry, and combining them with the cluster coordinates for framed flat PGL(K)-connections on surfaces. Using a canonical map from the complex of configurations of decorated flags to the Bloch complex, we prove that any generic component of L_K(M) is K_2-isotropic if the boundary satisfies some topological constraints (Theorem 4.2). In some cases this implies that L_K(M) is K_2-Lagrangian. For general M, we extend a classic result of Neumann-Zagier on symplectic properties of PGL(2) gluing equations to reduce the K_2-Lagrangian property to a combinatorial claim. Physically, we use the symplectic properties of K-decompositions to construct 3d N=2 superconformal field theories T_K[M] corresponding (conjecturally) to the compactification of K M5-branes on M. This extends known constructions for K=2. Just as for K=2, the theories T_K[M] are described as IR fixed points of abelian Chern-Simons-matter theories. Changes of triangulation (2-3 moves) lead to abelian mirror symmetries that are all generated by the elementary duality between N_f=1 SQED and the XYZ model. In the large K limit, we find evidence that the degrees of freedom of T_K[M] grow cubically in K.

Item not freely available? Link broken?
Report a problem accessing this item